

City of Quesnel

Presentations to Meeting the Community's Water Quantity Demands

Water Conservation Plan

Production Well and Preliminary Surface Water Influence Assessment

September 10, 2012

City of Quesnel

Water Conservation Plan

September 10, 2012

Current Water Conservation Practices in Quesnel

- Sprinkling Regulations
- Water Conservation Guide
- Leak Detection
- Bulk Water Station

Water Use in Quesnel

What does a reduction of 30% look like?

Professional Well Development and Consulting Services

CONSERVATION MEASURE	WATER SAVINGS ESTIMATED	COST BENEFIT
Public Education Program	5%	5.0
Retrofit Kits/Targeted Retrofits	5%	2.7
Incentive Rebate Program	5%	2.1
Industry Workshops	2%	1.8
Audits of Large Volume Users	1%	1.2
Cost-of-service Accounting	Depends on outcome of	
	cost of service study	
Sprinkling Regulation	Already in place	

CONSERVATION MEASURE	WATER SAVINGS ESTIMATED	COST BENEFIT
Leak Detection and Repair	Already in	
Strategy	place	
Commercial/Industrial Water Metering	6%	0.9
Pressure Reducing Valves	2%	0.6

CONSERVATION MEASURE	WATER SAVINGS ESTIMATED	COST BENEFIT
Residential Water Metering	14%	0.4
Large Landscape Audits	0.1%	0.3
Reuse and Recycling	1%	0.1
Xeriscaping/Landscape Management	10%	0.0
System Wide Pressure Management	Impractical with existing system layout	

CONSERVATION MEASURE	WATER SAVINGS ESTIMATED	COST BENEFIT
Water Accounting	Requires metering	
Distribution System Audit	Requires metering	
Loss-Prevention Program	Requires metering	
User Rates based on Water Use	Relevant only if users are metered	

Recommendations for Water Conservation Measures

Educational Measures

- i. public education campaign
- ii. industry workshops
- iii. audits of large volume users
- iv. incentive rebate program
- v. targeted retrofits

Full Cost of Service Recovery

i. cost of service study

Regulatory Measures

i. landscape irrigation enforcement

System Improvement Measures

- i. leak detection and repair strategy
- ii. install individual pressure reducing valves
- iii. undertake a universal metering study to determine if metering is worthwhile at this time, and under which conditions it would be viable if not now

City of Quesnel

Production Well and Preliminary Surface Water Influence Assessment

URBAN systems BC Groundwater Consulting Services Ltd. Professional Well Development and Consulting Services

September 10, 2012

BACKGROUND

- City relies completely on wells for water supply
- City currently operates six (6) wells
- City properly maintains wells and monitors aquifers
- Well field is aging
 - Two (2) less than minimum design life (15 years)
 - One (1) approaching maximum design life (25 years)
 - Three (3) beyond maximum recommended design life
- Majority of wells located adjacent to rivers

SCOPE

- Evaluate sanitary seal of each operating well
- Train and assist City staff with testing each well
 - Expands current operator knowledge of well system
 - Significant cost savings (est. \$50k \$100k)
- Evaluate available yields of each well
- Recommend pumping rate for each well
- Prepare long-term forecast and replacement strategy
- Evaluate interaction with surface water (preliminary)

WELL CONSTRUCTION

PW4 (1963) PW9 (2004)

WELLHEAD COMPLETIONS

PITLESS ADAPTOR

INITIAL WELL YIELD ESTIMATES (WHEN DRILLED)

AVAILABLE YIELD AND PUMPING RATES (CURRENT BY WELL)

INCREASING YEARS OF SERVICE

WHY DO WELL YIELDS AND PUMPING RATES DECLINE OVER TIME

- Migration of sediment from aquifer(screen blinding)
- Encrustation due to water composition (hardness)
- Groundwater biology (organisms and bacteria)

Inadequate flushing of the well screen during construction is one of the main sources of excessive long-term fouling.

 It is difficult (if not impossible) to adequately flush a gravel-packed well screen...

CURRENT RECOMMENDED PUMPING RATES (2012)

LONG-TERM FORECAST (20 YEARS)

systems

TOTAL WELL CAPACITY [L/s]

Consulting Services Ltd.

Professional Well Development and Consulting Services

CONCLUSIONS

- Base case (do nothing) will result in a shortfall within the next few years
 - There is currently inadequate redundancy to offset the loss of one high-capacity well during the summer months
- Implementation of comprehensive well rehabilitation is necessary
 - Reduces the potential for catastrophic loss of a well
 - Provides time to implement other options

RECOMMENDATIONS

- Continue to monitor aquifers
 - Datalogger upgrade currently underway (2012)
- Implement comprehensive well rehabilitation (2013)
- Develop program to acquire Environmental Certificates
 - Liaison with regulatory agencies (2012)
 - High-capacity pumping tests of select wells (2013 2014)
- Exploration to confirm future production well options
 - West Region (2013) and Central / East Region (2014)

Fitting Everything Together

Long Term Supply and Treatment Plan

- When new wells are required
- Where to develop wells
- What treatment may be required depending on well location
- Well head protection
- Well monitoring and maintenance
- Forecast major capital expenditures

QUESTIONS

